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TRATITLING-EDGE FLAPS ON SWEPT AND TRIANGUTAR WINGS?

By Herry A. James and Iynn W. Hunton
SUMMARY

A method is presented whereby incremental pitching moments can be
estimated for swept and triangular wings having arbltrary types of
trailing-edge high-1lift flaps. In the method use is made of span-loading
theory together with two-dimensional airfoil date adjusted for the effects
of sweep. The method as presented was limited to low speeds and small

angles of attack,

Application of the method is demonstrated for some 58 cases covering
various types of flaps on wings heving a wide range of sweep, aspect
ratio, and taper ratio., For all wings, swept as well ag triangular, a
mean deviation from experiment of about 0.02 in incrementel pitching-
moment coefficient was found.

Two-dimensional-flap date pertinent to the generasl spplication of
the method are summarized in graphical form.

INTRODUCTION

The theory of references 1 and 2 permits the rapid determination of
the spanwise distribution of 1ift, lift-curve slope, aserodynamic center,
and induced drsg for wings having srbitrary plen forms and trailing-edge
flap configurations. Calculstions of the pitching moment with trailing-
edge flaps deflected, however, are outside the scope of this theory since
no method of estimating the chordwise distribution of the loading due to
flap deflection was inecluded.

The work of reference 3 has demonstrated, on a particular h5° swept-
back wing with flaps, how two-dimensional airfoil data and sweep theory
can be used to estimate the chordwise load distribution on a swept wing
when the spanwise locad distribution is known., Once the chordwise and
spanwlse load distributions are known, of course, the pitching moment can

1Supersede% recently declassified NACA RM A55DOT7 by Harry A. James
and Iynn W. Hunton.
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readily be determined. The purpose of this report 1s to present a method
for estimeting the incremental pliching moment due to trailing-edge flaps
on swept and triangular wings by using two-dimenslonel airfoil data and
theory in conjunction with sweep theory. To demonstrate the range of
applicability of the procedure, a study has been made wherein measured
and estimated pitching moments are compared for a wide. variety of flap
conflgurations on swept- and trianguler-wing plan forms. .
To facilitate the general applicatlion of the method, some attention
has been given to collecting from numerous sources relevant two-dimensional
deta for the commonly used types of high-1ift flaps, including some data
Tor flaps with area suction or blowing. These results have been summarized
herein in grephicsl form. )

NOTATION
A agpect ratioc - _
b wing span .
c local chord
b/2
g dynemic chord / chdy -
g mean aerodynsmic chord, }575——75- o
o &%
1ift
Cr, 1ift coefficient, =35
Cm pitehing-moment coefficient about E/h, pitchigggmoment
c1 section 1lift coefficient, sectia& Lif%
em gection pltching-moment coeff:‘.c:len'b,_____E’ecJGlon pizzging moment
Cly rate of change of section 11ft coefficlent with angle of attack,
per deg .
g rate of change of gection lift coefficient with flap deflection,
per deg
Cmg, rate of change of section pltchlng-moment coefflcient with flap

deflection, per deg
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c-Po

&n

51

av

center of pressure, percent chord
wing ares

2
factor equal to 3-100(An)

free-stream dynamic pressure
longitudinal coordinate from &/4 to local c.p.
lateral coordlnate from plane of symmetry

angle of attack, deg

c
2
flap effectiveness parameter, Eié
a
incremental value

angle of flap deflection, measured in plane parallel to plane of
symmetry, deg

angle of flap deflection for effective section measured in plane

normal to the reference sweep line, ®n = tan™* E%%—%), deg

angle of flap deflection measured in plane normal to hinge line,
deg

taper ratio

fraction of semispan, %?

sweep angle, deg
Subscripts

additional 1ift due to angle of attack
basic 1ift due to camber
flap or increment due to flap deflectilon

average
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A yawed flow

A=0 two-dimensional or equivalent two-dimensional
METHOD AND APPLICATION

The intent of thls report is to supplemenit references 1 and 2 for
the purpose of obtaining estimates of the pitching moment with fleps '
deflected.?. The chordwise distribution of the loading due to flap deflec-
tion as determined from two-dimensional data are applied, by means of
simple-sweep theory, to swept wings and to highly tapered plan forms sucE
ag triangular wings.

Section loadings on finite swept wings having moderate taper can
rather successfully be related to those in itwo-dimensional flow through
the simple-sweep~theory relations by treating them as untapered wlngs
having a sweep engle equal to that of the c/h line, as demonstrated in
references 3 and 4. The primary assumption made is that each section
(streamwise) of the finlte wing is assumed to behave as that of a yawed .
infinite wing having identical streamwise geometry and e sweep angle
equal to that of the finite wing as illustrated in figure 1. For the
yawed infinite wing the chordwise load distributions and centers of pres-~
sure of streamwise sections are identical to those of sections normel to
the leading edge. These normal sections designated as effective sections
can be related directly to two-dimensional airfoil data through simple-
sweep-theory relations.

To attempt to apply sweep theory to determine an effective section
on wings with large amounts of taper leads to a rather complicated section
owlng to the wvariation in sweep. angle of the constant—percent-chord lines.
Obviously, in the interest of simplicity of application, some approximation
is required for this case. Such an spproximation is discussed in detail
in a subsequent sectlon.

Untapered Swept Wings

A method is developed first for the simpler case involving no taper.
One effective section is used for both the additional and basic types of
chordwise loeding. The following steps are then taken for ‘the purpose of
obtalning estimated local centers of pressure.

2Another approach to this problem more limited in its applicebllity
is presented in NACA TN 1674 entitled "Estimation of Effectiveness of
Flap-Type Controls on Sweptback Wings," 1948, by John G. Lowry and
lesglie F. Schneilter.
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l. Determine the incremental spanwise load distribution due to flap
deflection from available theory such as reference 1 (cz versus 1 as
shown in fig. 1).

2. Obtain the centers of pressure for the sections (streamwise) of
the wing that intersect the flap as follows:

(a) Assume each ‘finite-wing section to be equivalent to one on a
yawed infinite wing having a sweep angle equal to that of the finite
wing.

(b) Determine the geometry of the effective section on the yawed
infinite wing. Belng untapered, the flap deflection angle 1s the only
important parameter which differs between the streamwise and effective
sections. The flap-chord ratio remains unchenged and the variation in
thickness can be ignored.

(¢) Solve for an equivalent two~-dimensional 1lift coefficient in
unyawed flow for each section that is being considered on the flap of
the flnite wing.

c2

®lp=o = cos%A

where cj, 1s the incrementael 1ift coefficient due to flap deflection
and is equal to cj3.

(d) Determine a center of pressure from two-dimensional airfoil
data or from theory of a section having the geometry of the effective
section in (b) end at the 1ift coefficient obtained in (c). Since the
section (streamwise) of the finite wing is assumed as identical to
that on the infinite wing, the local center of pressure can be assumed
to be that found for the effective section.

3. Assume the center of pressure for the unflapped sections of the
wing to be located at the 0.25-chord line, except in the regions within
0.20 semispan of the ends of the flap. In this transition region, the
center-of-pressure variation can be spproximated by the relation
c.p. = 0.25 + k{Ac.p.). The value of the constant k and the definition
of Ac.p. are given in figure 2. This assumed variation for the center
of presgure near the ends of the flep was based primarily on the experi-
mental data shewn in figure 3.

L, With the local centers of pressure and the span loading deter-
mined, an integration of the section moments about & cormmon axis thus
yields the incremental pitching-moment coefficient due to flap deflection
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b/2 ) . o .
cmf = g%ﬁ CIACX dy | :

Tapered Swept Wings

Introducing taper into the problem rather complicates the determina-
tion of an effective sectlon from sweep-theory concepts, owing to the
variation in sweep angle of the constant-percent-chord lines. With flaps '
retracted, the loading is primarily of the additional type and may —_ = =
generally be assumed as concentrated close to the 0.25-chord line. With '
flaps extended, however, s large portion of the loading is of the basic
(canmber) type having a much more rearward center of pressure. Since the
load line for the asdditional loading (i.e. ., quarter-chord line) has been .
shown (ref. 4) to serve quite satisfactorily as the reference sweep line -
to define an average effective section for this type of loading, it
would then appear ressongble to expect that the basic load line might in T
similar fashion be used as a reference sweep line to define an effective o
section for the baslc type of loading. Thus, the effect of the varying )
sweep angle of the ‘¢onstent-percent-chord lines on the chordwise loading '
can be approximated in a rather simple manner. For the highly tapered
wing, two different reference sweep angles become involved in the problem
as illustrated in figure 4. Combining these two loads one ‘may derive a
local center of pressure as follows:

ey =¢ cos2Ag) + ¢ cosZ =c +c
1 = %, Topl Bp) = Clg, * Clp,

C C
lg, lp
A . A
Pop = 0. P
S = CZA) Tep b(%x)

However, 1t can be shown that the procedure can be simplified still fur-
thur by use of only the basic load line as the reference sweep line for
both components of the loading (additional and bagic). Proof that use

of only the one load line ylelds an identical value of c¢.p. %o that -
found by using both load lines 1is glven in Appendix A. Hence, the more
detailed procedure by parts resolves into one no more difficult than that
used for untapered wings where only one effectlve sectlon for both %he
additionsl and basic parts of the loading wes necessary. '

The basic-load reference sweep line required in thls methed was _
determined from calculations of center of pressure of the basic load for
e plain flap ueing the section theory of reference 5. In the present
analysis the plain-flap theory of this referénce has been used for all _ -
flap configurations irrespective of the type' This procedure is illus- o
trated in Appendix B and in figure 4. It should be nofed that the -



NACA ™ koko 7

streamwise geometry of the section considered on the finlte wing is
identical to that for the fictitious yawed infinite wing; moreover, the
effective section is defined on the fictitiocus yawed infinite wing and
not on the finite wing.

Two-Dimensional Data

To facilitate the use of the method, & summary of some pertinent
flap parameters and flap data from two-dimensional airfoil tests and
theory 1s given in figure 5. Values of op, czs, C.Deyys and Cmg for a

plain flap from the theory of reference 5 are shown in figure 5(a).

The values of oy and Cnp for various types of flaps given in figures 5(Db)
and 5(c) were obtained from available test data of references 6 to 5k.

Use of values of og and cme from plain-flap theory are generally appli-
cable for area-suction- and blowing-type flaps employing only sufficient
amounts of suction or blowing for maintenance of sttached flow on the
flaps of the finite wing. Use of these data 1s demonstrated in Appendix B.

DISCUSSION

A complete summary of the calculations made of the incremental pitch-
ing moments due to flaps for some 58 cases on swept and triangular wings
at low speed is presented in table I. The measured pitching-moment results
for the sample wings were obtained primarily from references 55 to 79. A
representative sampling of these results is illustrated in figures 6(a)
and 6(b) for the swept and the triangular wings, respectively. Here an
attempt bas been made to show briefly same results for each of the verious
types of flap configuraiions examined. The absclute values of 1lift and
moment indicated in these results were obtained by cambining the calculated
increments of these quantities with the respective measured values deter-
mined from tests of the wing with flaps retracted. The slopes of the
estimated plitching-moment curves were determined from the theory of
reference 2. An examlination of these results shows, surprisingly enough,
that little difference in accuracy exists between the swept- and triangular-
wing results. An over-all Indication of the accuracy of the method for
all 58 cases can be seen in the correlation plot of figure 7 where a mean
deviation of the order of 0.02 in ACy, was found. The method as presented
was limited to the low-speed, small-angle-of-attack range where the
longitudinael characteristics are essentislly linear, and in the lift range
where the loading due to flap deflection can be calculated with reasonably
good accuracy. Sample camparisons of measured and estimated span load
distributions and locel centers of pressure at «=0° are shown in
figure 8 for a swept and a triangular wing.
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CONCLUDING REMARKS

The low-speed incremental pitching-moment coefficlents due to
deflection of arbitrary types of partial-span trailing-edge, high-1ift
fleps on swept and triangular wings at o° angle of attack have been )
estimated and the values correlated with test results for a wide variety
of swept- and trianguler-wing configurations. The estimaltes were based
on span-loading theory combined with two-dimen51onal girfoil data
corrected to yawed flow conditions. - -

The results of the study clearly showed that satlisfactory estimates
of pitching-moment increments could be made for wings with sweepback
including those with large smounts of taper such as triangular plen forms.
For all wings, the estimated increments of moment coefficilent deviated
from experiment by a mean value of about 0.02.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Apr. 7, 1955 T
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APPENDIX A

USE OF THE BASIC LOAD LINE AS THE REFERENCE SWEEP LINE

FOR DETERMINING LOCAL CENTERS OF PRESSURE

The general expression for the loading made up of basic and
additional components can be expressed in coefficient form as

ey = ¢y + Cly (a1)

Since the shapes of the loadings are assumed to be invariant with magni-
tude, the following expression can be used to define local center of
pressure for either the finite or two-dimensional case.

C'La Cl_b
¢.p. = 0.25(5" ) + c-Pep\ 5y (a2}

The analysis by parts for the tapered swept wing indicates that

= os2 + c cos2A;
ey = Clg, (cosha) + 3y ( ) (a3)

I lp .
C.P.p = 0.25<t;:€>-+ c.p.b<zlgi> (AL)

It ig the intent now to show that only the value of A, 1is required in
the determination of c.p.

and

For a particular flap-chord ratio and deflect:f.on,_cz.b and c.p;b
A=0

can be determined from theory or two-dimensional data from which the
basic loading for the finite wing section can be expressed as

- 2 _
chA = c}bA=ocos Ay (45)

which then defines the additional loading

C'LaA = c?’A - Cz.bA (As)
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Substitution of equations (45) and (A6) into equation (Al) gives

o, cos2
C.P.y = (c.-A‘o (c.p.-b -0.25) + 0.25 (A7)

The two-dimensional pitching-moment coefficient may be expressed as

—Cma_ = C (c.peyy, - 0.25) (a8)
Tih=o0 Ypo b
Substitution of equation (A8) into (A7) glves .
c.p., = 0.25 - —E%§é>cos2Ab (49)

which, it can be seen, does not involve the value of the additional 1ift
reference line Ag.
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APPENDIX B

SAMPLE CAICULATTONS FOR AN ASPECT~RATIO-2 TRIANGULAR WING

WITH A FULI-SPAN, CONSTANT-CHORD, PLATN FLAP DEFLECTED 10°

O[O0 O [O[O]® [0 [@
n [eg/e | ag [ 1, [°-Pey p o e S
0 ]0.107{0.3910.135] 0.69 {31.0}11.6|~-0.1116}0.18%4[0.86
Al L11e) La2f J1u3) 69 f31.4fir.7] -.1237) .197) .83
.21 .130| .45} .160f .68(32.0[11.8] -.1197] .222| .79
.3] .150] .48] .177|l .67[33.3|11.9] -.1255] .257( .TH
Al L1t .52l .203] .66 133.8]12.00 -.1307| .295] .69
.5] .210f .56| .240} .64}34.5|12.1} -.1386| .35k| .6k
.6} .270] .63] .265] .61)37.0|12.5] ~.1450| .M16| .60
.71 .360] .70] .313] .57|Lk0.0}13.0( -.1388] .532| .51
81 .530] .84 .379] .LW8{L6.0{1k.3] -.1106] .788] .39
.9{1.000{1.00] .610} -=-=| --=] ===] © ==} .25
1.0[{1.000/1.00}0 e | === =] O ———] ——-

Intervals of 0.1 will suffice generally.

From streamwise flap geometry.

Theoretical values from figure 5(a).

Incremental span load distribution due tc flap deflection.
from aveilsble methode such as reference 1.

Plain-flap basic load c.p. from figure 5(a).

Sweep of the constant-percent line through c.p., from (:).

8y = tan~l(tan 8/cos Ay) = tan~*(tan 10°/cos <§)).

From two-dimensional date or theory (theory used in this case),
such as in figure 5(a), for cg/c in (:) and flap deflec-
tion Bn in

Clpno = c;A/cos .=(:>/cosa (:).

From two-dimensional data or theory at =0 from (:), for

cofceoe

®e 606

cf/c in (:), and flap deflectipn Bp in (:); or computed by
c.p. = 0.25 - (emg/ey, ) = 0.25 - /@.

At this point, several of the accepted procedures may be used with
the sbove information to obtain an incremental pilitching-moment coef-

1.0 2
ficient due to flap deflection. The relation Cp, = f Crg /4(%5}(%)
o

from reference 80 is sometimes used; or more simply
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b/2
-2 x
Cn. = Te . c-LAcncd:y=—CIf-E

(x 1s the dilstance to &/4 from the wing center of pressure) which for
the above exesmple was found to be: -

- - -0\ _ .
Cpp = -0.206 I%Z?) 0.098

Configurations havi}:_tg constant-percent-chord flaps naturally have

slngular values of @, @, @, @, @, and and, consequently,

the computations are reduced considerably.
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TABIE I.- SUMMARY OF RESULTS OF MEASURED AND ESTIMATED
FLAP PTTCHING~-MOMENT INCREMENTS

Casge Flap extent, celc 8t I Cmp
To.| A | A A/s] Type flap 2y/v #/ Meesured[Estinated
1| 6.0[0.50] b5 |double-slotted[0.18 to 0.58 0.251 55| -0.1L -0.13
2| 3.5| .l5] 60 |double-slotted| .21 to .57 25| 55 -.12 -.09
3| 3.5{ .30| 4 |double-slotted| .16 to .70 25 55| -.30 -.30
1 4.8] .51] 35 |area-suction .15 to .5010.22 to .26] 55| -.11 -.12
5| 5.1] .38] 45 |single-slotted| .1k to .45 .25| 20| "-.ok -.0k
6| 5.1] .38| 45 |single-slotted| .14 to .45 25| 30 -.06 -.06
7| 5.1] .38] 45 |single-slotted| .14 to .45 .25 4o} -.o7 -.07
8 | 5.1| .38] 45 |double-slotted| .14 to .LiS 251 30] -.07 -.06
9 | 5.1] .38} 45 |double-slotted| .1k to .45 5| bo] -.09 -.08
10 | 5.11 .38} 45 |double-slotted| .1k to .45 555 -1 -.12
11} 6.0] .50] 35 |split .02 to .50 .20| 60] -.03 -.03
12 | 6.0] .50| 35 |double-slotted| .02 to .50 25| kol -.13 -1k
13 | 8.0] .k5| 45 |split 0 to .50 20| 60 .07 .07
14 | 8.0] .45 b5 |eplit ) to .60 .20} 60 .02 .03
15 | 3.8| .59| 47 |plain .10 to .58 .25 30] -.0L -.03
16 } 3.8] .59} 47 |plain .10 to .58 S5l -.05 -.03
17 | 3.8]| .59} 47 |plain .10 to . B 60] -.05 -.07
18 | 3.5| .50| 45 |plain 0 to .50 .20] 20] -.ok -.04
19 | 3.5] .50] 45 |[plein 0 to .50 .20| o} -~.06 -.0h4
20 | 3.5| .50] 45 |plain o] to .50 .20| 60} -.07 -.05
21 | 2.5 .42| 40 |plein .20 to .50 .20] 53} -~-.05 -.0k
22 | 9.0] .4o| 0 [split 0 to .60 .20} 60] -.16 =17
23 | g.0| .bo} 0 |}spiit 0 to .98 .20] 60] -.19 -.20
2k | 9.0| .40f 0 |single-slotted|0 to .60 25 45| -.3% -.35
25 | 9.0] .40} 0 |single-slotted|o to .98 25| k51 <.k Y-
26 | 9.0] .4%0] 0 |double-slotted|O to .60 .25] 50 -~.50 -.50
27 | 9.0} .40| 0 Jaouble-slotted|O to .98 .25 50} -.60 =61
28 |10.0} .ko| %0 |eplit .07 to .46 .20] 30 .0l -.02
29 [10.0) .40| 40 [eplit .07 to .46 .20] 60 .04 0
30 | 2.6] b1} 60 |split 07 to .50 .201 60] =-.03% -.03
3L | 3.4 .L4{ L8 |plain .07 to .59 .20} 20] -.0k -.02
32 | 3.4} 44| 48 |plain .07 to .59 .20| 60| ~-.06 -.03
33 | 3.%| .4h4j 48 |plain .07 to .99 .20} 20 =-.07 -.06
3% | 3.4 .44 L8 |plain 07 to .99 .20] 60} =~.13 -.12
35 | 2.0]0 56 |single-slotted |0 to .70 .21 ho| -.28 -.27
36 | 2.0}0 45 |plain .18 to 1.00 25| 20] -.1k% -.15
37 | 3.7} .40| L4 {area-suction .16 to .50 221 61] -.16 -.14
38 | 3.7| .Lo} 44 |ares-suction A6 to B .22]1 61| =~.28 -
39 | 2.0]|0 56 |area-suction A7 to .72} .11 to -.33]| 59} -.29 ~.34
ho | 2.0]0 56 |single-slotted]| .18 to .70 21| kof -.23 -.21
4 | h.0f0 37 |single-slotted| .13 to .67 .13 to .33] ko] -.25 -.23
ko | 2.3]0 52 |eplit .08 to .67] .11 to .32 ¥9] -.15 -.13
43 1 2.3]0 52 |plain .08 to .67] .11 to .32} 531 -.16 -.13
L | 2.310 52 |double-slotted| .08 to .67| .11 to .32 50| -. -.29
45 | 2.0]0 56 |plain o] to 1.00| .11 to 1.00] 10| -.20 -.10
46 | 2.0]o 53 |plain 12 to 1.00} .13 to 1.00{-10 .10 Q9
h7 | 2.3]0 52 |plain 0 to .50} .13 to .25[ 20| -.08 -.09
48 | 2.3]0 52 |plain 0 to .50 .13 to .25} Bo| -.13 -.13
k9 | 2.3]0 52 |plain o] to 1.00( .13 to 1.00| 10} =-.08 -.09
50 | 2.3]0 52 |plein o] t0 1.00{ .13 to 1.00| 20f =-.15 -.15
51 | 2.3}0 52 }plain o] to 1.00} .13 to 1.00| 30} -.22 -.18
52 | 2,0] .20} 45 lsingle-slotted| .18 to .96] .11 to .Lb1]| kO] .26 -.2h
53 | 2.0] .33} 37 |single-slotted| .19 to 1.00} .13 to .33} LO] -.26 -.26
54 | 3.0(0 45 |single-slotted| .15 to .77| .13 to .50} 4ol =.15 -.18
55 | 3.0| .40] 16 |area~suction .15 to .75 291 60} -.29 - 27
56 | 4.8] .51| 35 |plowing 1 o .50 23| 51 -.12 -.13
57 | 4.8] .51] 35 {blowing Al to .50 .23| 60| =-.16 =17
58 | 2.0l0 56 |plain 0 to .70 21| 22| -.1h4 -.12
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Figure 1.~ Theoretical loading for untapered wing with trailing-edge flap.
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Figure L.- Tapered swept wing with reference sweep lines shown for
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